🗒️贪心算法
type
status
date
slug
summary
tags
category
icon
password
基本概念
根据代码随想录里说的,贪心的本质是选择每一阶段的局部最优,从而达到全局最优。
有同学问了如何验证可不可以用贪心算法呢?
最好用的策略就是举反例,如果想不到反例,那么就试一试贪心吧。
贪心算法一般分为如下四步:
- 将问题分解为若干个子问题
- 找出适合的贪心策略
- 求解每一个子问题的最优解
- 将局部最优解堆叠成全局最优解
贪心算法,看几个题目吧
分发饼干问题
假设你是一位很棒的家长,想要给你的孩子们一些小饼干。但是,每个孩子最多只能给一块饼干。
对每个孩子 i,都有一个胃口值 g[i],这是能让孩子们满足胃口的饼干的最小尺寸;并且每块饼干 j,都有一个尺寸 s[j] 。如果 s[j] >= g[i],我们可以将这个饼干 j 分配给孩子 i ,这个孩子会得到满足。你的目标是尽可能满足越多数量的孩子,并输出这个最大数值。
示例 1:
- 输入: g = [1,2,3], s = [1,1]
- 输出: 1 解释:你有三个孩子和两块小饼干,3 个孩子的胃口值分别是:1,2,3。虽然你有两块小饼干,由于他们的尺寸都是 1,你只能让胃口值是 1 的孩子满足。所以你应该输出 1。
示例 2:
- 输入: g = [1,2], s = [1,2,3]
- 输出: 2
- 解释:你有两个孩子和三块小饼干,2 个孩子的胃口值分别是 1,2。你拥有的饼干数量和尺寸都足以让所有孩子满足。所以你应该输出 2.
这里应该满足,胃口最大的那个优先被满足。所以我们得从后往前分析:
先对两个数列进行排序,然后遍历每个人,当大饼干能够满足相应的人的时候,饼干的指针index就减一。
火炉覆盖居民问题
长度为n的数组,表示一条线段,数组中每个数表示线段上等间距点的居民点居住情况,0为无人,1为有人,现在有x个火炉,放置在线段上,火炉的能升温的半径为d,求让居民点尽可能少地不受冻的情况下,受冻的居民点个数。
这里就是先把所有居民按照索引来寻找,也就是把[0 1 1]变成[1 2]这种。然后在这个地方安插火炉。看火炉能覆盖多少人。
摆动序列
如果连续数字之间的差严格地在正数和负数之间交替,则数字序列称为摆动序列。第一个差(如果存在的话)可能是正数或负数。少于两个元素的序列也是摆动序列。
例如, [1,7,4,9,2,5] 是一个摆动序列,因为差值 (6,-3,5,-7,3) 是正负交替出现的。相反, [1,4,7,2,5] 和 [1,7,4,5,5] 不是摆动序列,第一个序列是因为它的前两个差值都是正数,第二个序列是因为它的最后一个差值为零。
给定一个整数序列,返回作为摆动序列的最长子序列的长度。 通过从原始序列中删除一些(也可以不删除)元素来获得子序列,剩下的元素保持其原始顺序。
示例 1:
- 输入: [1,7,4,9,2,5]
- 输出: 6
- 解释: 整个序列均为摆动序列。
示例 2:
- 输入: [1,17,5,10,13,15,10,5,16,8]
- 输出: 7
- 解释: 这个序列包含几个长度为 7 摆动序列,其中一个可为[1,17,10,13,10,16,8]。
示例 3:
- 输入: [1,2,3,4,5,6,7,8,9]
- 输出: 2
Loading...